

Практика применения ML моделей в оценке рисков

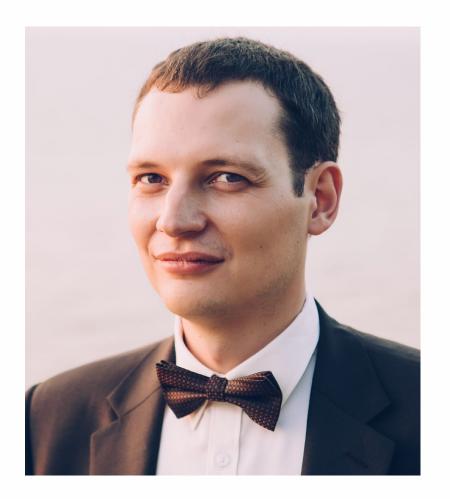
www.cinimex.ru

Ключевые тезисы

Никогда не судите о человеке по его друзьям. У Иуды они были безупречны.

© Поль Валери

ГГСкажи мне кто твой друг, и я скажу кто ты.


Мигель де Сервантес

TheOcrat Quotes

Давайте знакомиться

Мартынов РодионСтарший руководитель проектов дирекции лаборатории данных, компания «Синимекс» 25 лет в IT, 5 лет в DS & DE & AI

Шихалиев ФрэнкКонсультант по развитию машинного обучения,
Росгосстрах
15 лет в страховании и анализе данных

Компания «Синимекс» – разработчик ИТ-систем для бизнеса

Мы команда высококвалифицированных ИТ-специалистов, обладающих уникальной экспертизой и обширными компетенциями в области создания и внедрения бизнесориентированных и инфраструктурных решений в крупнейших организациях.

Наши преимущества

с 1997 года на рынке

3000+ реализованных уникальных проектов

500+ сотрудников

отмечены ведущими PA (CNews, RAEX, TAdviser)

партнерство с ведущими мировыми поставщиками решений

Наши рейтинги

8_{MECTO}

TADVISER

Крупнейшие поставщики сторонних ИТ–решений из реестра отечественного ПО 10_{MECTO}

||RAEX

Рэнкинг крупнейших ИТ– компаний и групп в области разработки программного обеспечения (2022 год)

13 MECTO

CNews Analytics

Разработчики и поставщики российских ИКТ-решений 2021

22 MECTO

CNews Analytics

Крупнейшие поставщики ИТ для финансового сектора

23_{MECTO}

Рэнкинг крупнейших российских групп и компаний в области информационных и коммуникационных технологий (2022 год)

29 MECTO

CNewsAnalytics

Крупнейшие ИТ-разработчики России 2021

Наши решения

Заказная разработка

Консалтинг (аналитика, архитектура, дизайн, MVP, исследования)

Стаффинг команд и специалистов

Внедрение Enterprise платформ

FinTech и R&D

DevOps (консалтинг, аудит и выстраивание процессов ЖЦ разработки ПО)

Интеграционные решения

Автоматизация бизнес-процессов

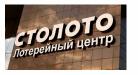
Внедрение стороннего ПО

Предоставление API (открытых интерфейсов)

Решения на микросервисной платформе

Машинное обучение и анализ данных

Машинное обучение и анализ данных


наши услуги входит диагностика, проверка текущих гипотез по автоматизации, разработка моделей машинного обучения.

- Рассчитываем эффективность внедряемого решения
- Помогаем в систематизации текущих данных
- Проводим поддержку и актуализацию внедренных решений
- Всесторонне и объективно оцениваем новые технологии
- Имеем большой штат экспертов и специалистов в разных сегментах бизнеса

Ключевые проекты

Международный проект по оптимизации маркетинговыхкампаний в интернете

Прогнозирование спроса и распределение лотерейных билетов по всей России

Разработка чат-бота и базы знаний на основе искусственного интеллекта

Сегментирование клиентов по территориальным факторам, определение высокорисковых клиентов

Определение SKU с помощью компьютерного зрения

Итак!

Сегментация 2.0. Intro по проекту

Публикация о проекте

ML–проект Сегментация 2.0 компании Cinimex и Росгосстрах стал победителем в конкурсе Global CIO «Проект года 2022» в номинации «Лучшая модель машинного обучения для страховой компании».

Сегментация 2.0. Дорожная карта проекта

05/21

Старт проекта

Знакомство с источниками данных Проработка гипотез Анализ best practice

Подтверждена гипотеза
Подтвержден экономический эффект
Визуализация рисков и потенциала продаж для
различных страховых продуктов
Разработан и интегрирован в тарифный модуль РГС
микросервис с вызовом модели

Графовая модель

Подтверждена гипотеза
Подтвержден экономический эффект
Построены инструменты
инкрементного обновления графа
Разработан и интегрирован в
тарифный модуль РГС микросервис
с вызовом модели

Агенты и партнеры

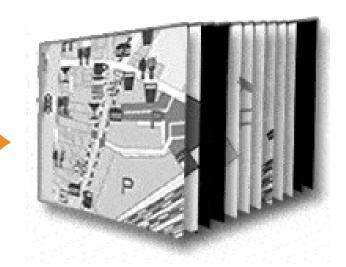
Проработаны гипотезы
Построены витрины с
инкрементным обновлением
Управленческий дашборд
Проект полностью сдан
Передача в поддержку и на
развитие

Сегментация 2.0. Общие вводные

Геосегментация

Геосегментация. Гипотеза

Проверка влияния локального окружения территории на риск аварийности

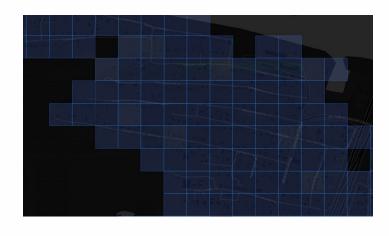


Набор карт для каждого убытка

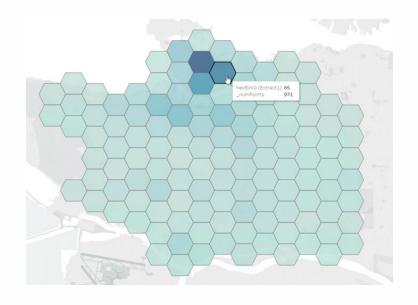
Геосегментация. Подходы Geo2Vec

Исследовано около 10 релевантных публикаций и best practice, из которых наиболее подходящим был выбран метод **Loc2Vec** (Learning location embeddings with triplet–loss networks).

Модель Loc2Vec учитывает локальные географические свойства местности, стараясь построить такое векторное пространство, в котором расстояния между «похожими» векторами минимально, а между «непохожими» максимально.



На вход модели подаются геоточки, в которых происходили ДТП / убытки, таким образом, модель учится «находить» места, похожие на те, где в прошлом уже реализовывались риски.


Геосегментация. Построение сетки полигонов

На основе административного деления

На основе квадратных тайлов

Гексагональная сетка


Геосегментация. Пример визуализации

Один из примеров визуализации полученных векторов.

Он не содержит оценку, и не говорит какой район более «рисковый».

Модель на данном этапе показывает только различия.

Модель говорит, что вот тут более непохоже, чем вот там.

Геосегментация. А как же скоринг?

В дальнейшем полученный из модели Loc2Vec вектор используется как дополнительный набор признаков моделью следующего уровня.

Векторное представление геолокации + дополнительные геопризнаки территории

Модель второго уровня

Оценка риска

Также модель второго уровня на вход принимает «классические» численные геопризнаки, описывающие оцениваемую территорию внешними для нее факторами.

Геосегментация. Направления

Геосегментация. Результаты

Оценка рисков

- Проведена большая аналитическая работа
- Целевая метрика на отложенной выборке улучшена

Визуализация

- Удалось повысить детализацию имеющихся решений геосегментирования
- Разработаны инструменты оценки развития и потенциала продаж в регионах

www.cinimex.ru

Графовая модель

Графовая модель. Intro

Цель: повышение точности текущих скоринговых моделей РГС при помощи добавления к оценке объекта анализа его окружения, построенного с применением графовых методов.

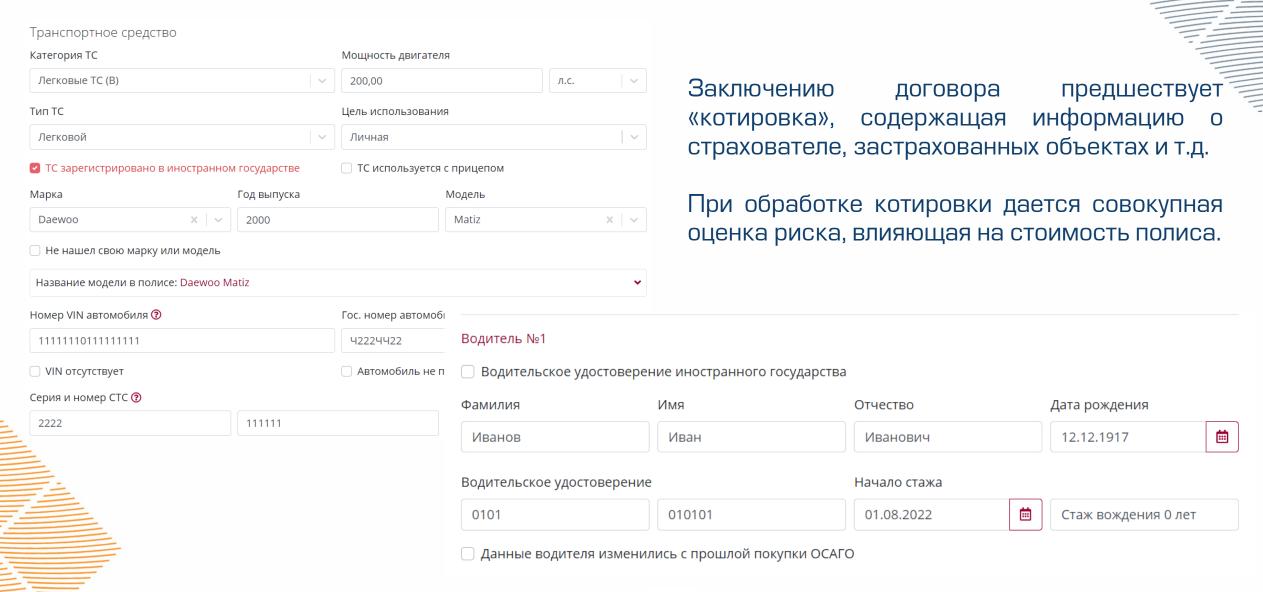
Базовая гипотеза: влияние окружения клиента при оценке риска клиента на этапе заключения договора страхования.

Понимание бизнес процесса

Задача – разработать модель, выявляющую высокорисковых клиентов на стадии заключения договора, которая:

Определяет окружение клиента

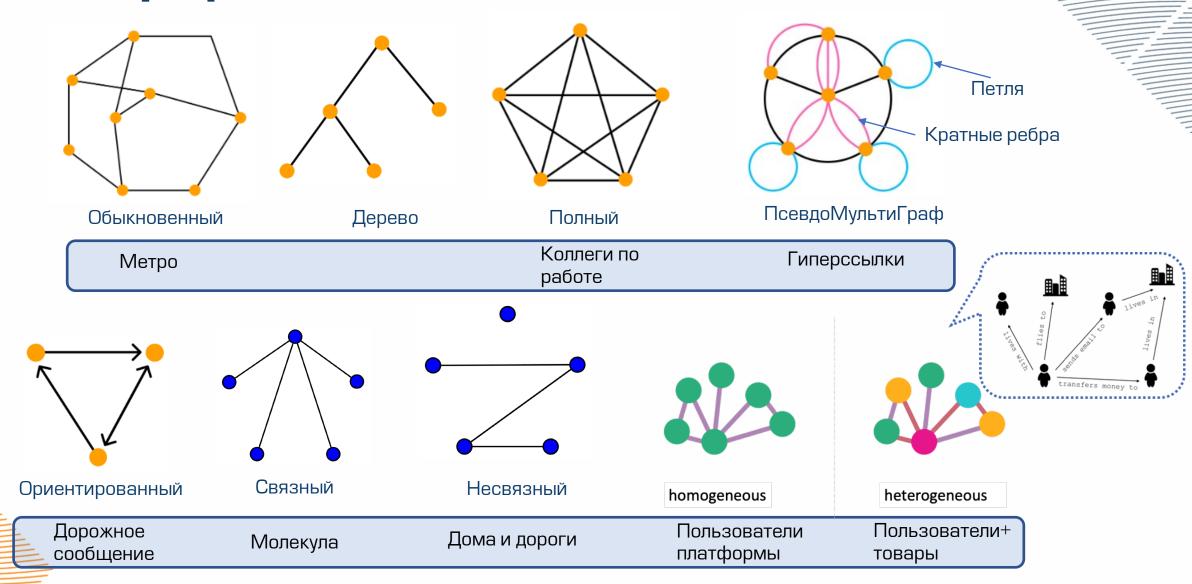
Анализирует степень рисковости окружения


Дает заключение по рисковости самого клиента

Новые признаки и скоры модели используются в качестве дополнения к существующей скоринговой модели РГС.

Котировка

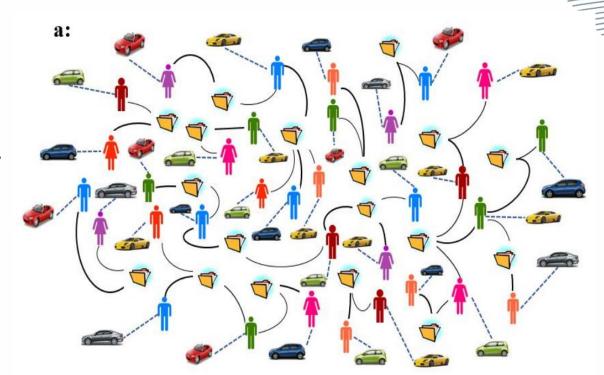
Работа с данными


Сложности:

- Богатый атрибутный состав журнала котировок (600+ полей);
- ❖ Эффект масштаба, кол-во котировок измеряется сотнями миллионов в год;
- Недостаточно жесткие правила валидации при вводе исходных данных;
- **Фактор времени** при образовании связи в графе.

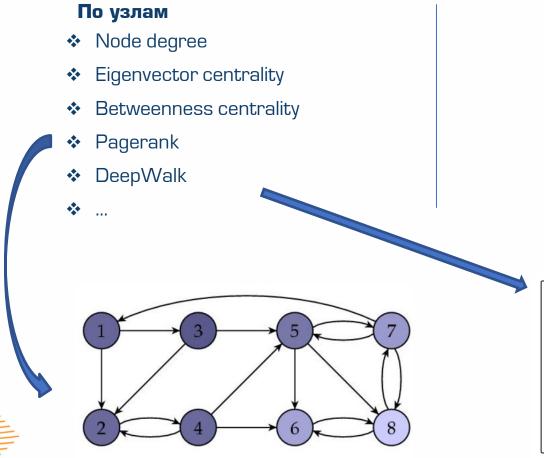
- 1. Получение данных из DWH;
- 2. Препроцессинг строковых значений;
- 3. Получение унифицированных колонок в соответствии с типами узлов;
- 4. Фильтрация выбросов;
- 5. Очистка и дедупликация;
- 6. ...

Виды графов

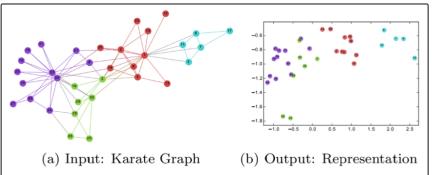

Большая подзадача – выбор целевого графа

Определение вида графа является первостепенным, т.к. от него зависит все остальное.

Для построения графа нужно определиться, какая структура будет оптимальной для хранения, удовлетворения требованиям и получения признаков.


Потенциальные структуры:

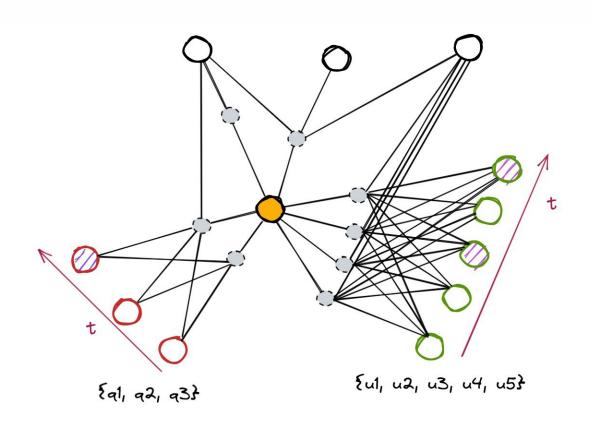
- 1. Однородный граф котировок;
- 2. Однородный граф узлов связи при сохранении истории их появления в котировках;
- 3. Гетерогенный граф узлов связи и котировок;
- 4. ..
- 5. Вариантов великое множество, см. пред. слайд.


Извлечение графовых признаков

- Математические оцениваются по структуре графа.
- ❖ Бизнес-признаки рассчитываются для решения конкретных задач по бизнес-логике

По графу

- Adjacency matrix
- Laplacian matrix
- Density
- Efficiency
- Агрегирование признаков узлов
- Наличие циклов, клик
- *


Дедупликация

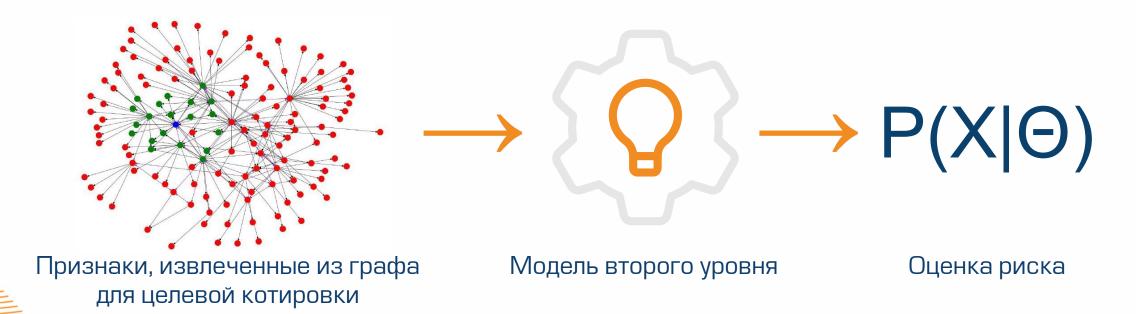
Проблематика:

Котировки могут повторяться, например автоматический расчет пролонгации и т.д.

Решение:

Чтобы «не надувать» граф и не искажать признаковое пространство графа необходимо выбрать **стратегию дедупликации** узлов и ребер графа.

R&D. Будни data science



30

www.cinimex.ru

Как подтверждали гипотезу

- ❖ Для графовой модели совместно с командой РГС был сформулирован критерий «высокорисковости»;
- Набор данных был размечен в соответствии с данным критерием;
- ❖ Во избежание лик-фактора все признаки считаются по прошедшей истории каждой котировки, помним про «фактор времени образования связи».

www.cinimex.ru

Пайплайн модели

Пайплайн можно схематично представить:

32 — www.cinimex.ru

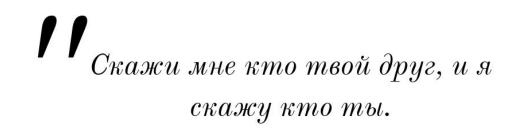
Как работает модель в режиме оценки

Обработка котировки моделью на этапе inference:

- На вход получаем информацию по необходимым атрибутам котировки;
- ❖ Котировка "приклеивается" к большому графу, все узлы в нем носят характер доступной истории;
- ❖ Для котировки строится окружение;
- ❖ Модель возвращает графовые признаки и признаки котировок;
- ◆ Формируется score для целевой котировки;
- ❖ Score и значения признаков передаются в модуль тарификации.

Решение позволяет построить интерактивную визуализацию графа с полной информацией о его окружении необходимого порядка.

Стек технологий


Вернемся снова к заглавному тезису

Make Graph Great Again!

Окружение имеет значение!

А вы что думаете?

Вопросы?

Мигель де Сервантес

The Ocrat Quotes

ВНИМАНИЕ!

Лаборатория Данных Узнайте больше ->>

